PRESENTATION OF A MODERN, SCALABLE AND EXTENDABLE MINE CONTROL STATION FOR SMALL AND MEDIUM ENTERPRISES

Dipl.-Ing. Tobias Krichler, Prof. Dr. Helmut Mischo (TU Freiberg)
Dr.-Ing. David Buttgereit, Dr.-Ing. Sebastian Bitzen (XGraphic GmbH)

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 641989
Outline

1. Current problems in mining
2. Requirements on modern Mine Control Stations
3. MoSC - Modern SCADA System
4. Summary
1 Current problems in mining

Challenges

- Decreasing ore grades
- More complex mineralization
- Increasing depths
- Narrow veins
- Irregular deposit shapes
- Increasing costs
- Fluctuating raw material prices
Consequences and Solution Approaches

Consequences

• Increasing costs
• Fluctuating raw material prices

Solution Approaches

• Economy of Scales
• Automation
• Efficiency enhancement
Benefits of data acquisition and evaluation

- Faster decision making
- Faster reaction on events

Due to:
- Monitoring of actual value and target value
- Guarantee secure conditions
- Process visualization
- Higher automation grade
- Maximization of effectiveness

https://gblogs.cisco.com
2 Requirements on modern Mine Control Stations

Optimization of planning processes

- reserve modelling - proved mineral reserve
- mine planning (total mine, Field, sub-field)
- mine planning ((panel, face, i.e. direction, Inclination of Stope/drift, ...)
- real time sampling during processing
- extraction
detection of machine health replacement before failure
- real time sampling during processing
- haulage
detection of machine health replacement before failure
- real time sampling during processing
- processing
detection of machine health replacement before failure
- market
market analysis

- days to weeks
- hours to days
- minutes to hours
- seconds to minutes
Requirements

- Small scale, modular and extendable MCS
- Plug and produce
- Access from everywhere
- Easy to use
- Machine readable communication
- Multivendor-capability
- Decentralized data evaluation to reduce data transfer
MoSC - Modern SCADA System

Structure

Firebird

MoSc Server

Optica UA

Process Data

Frontend via Webbrowser
Technologies

• Backend developed with .NET Core (Lean Framework and platform independent)
• Data storage on Firebird DB (Open source and industry proven)
• Web based frontend using Angular and WebGL (flexible and easily extendable/works on desktop PCs, mobile devices)
• Interfaces to process data with OPC UA (platform independent and standardized data access)
• Extendable via plugin system (to extend basic functionality and add additional process data interfaces)
3 MoSC - Modern SCADA System
Werte des aktuellen Versuchs

<table>
<thead>
<tr>
<th>Versuchs Nr.</th>
<th>Bezeichnung TUC</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>0258-feib-2015</td>
<td>S3-P15-L3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seiltyp</th>
<th>Achsabstand aufgezogen [mm]</th>
<th>Achsabstand vorgespannt [mm]</th>
<th>Last [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vectran</td>
<td>930,5</td>
<td>961</td>
<td>5.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Zustand der Maschine</th>
<th>Startzeit</th>
<th>Endzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10216</td>
<td>aktiv</td>
<td>2019-02-20</td>
<td>14:13:35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umgebungstemperatur °C</th>
<th>Seiltemperatur °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,5</td>
<td>12,87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Achsabstand aktuell [mm]</th>
<th>Dehnung [mm]</th>
<th>Last [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>961,30</td>
<td>5.00</td>
<td>5.000</td>
</tr>
</tbody>
</table>
3 MoSC - Modern SCADA System
Summary

- Trend to digitize and automate mines strides ahead
- No scalable and modular MCS on the market
- MoSC gives the opportunity for an
 - Easy utilization
 - Machine to Machine communication
 - Multivendor-capability

Mine Control Station
Thank you for your attention and Glück Auf!