Real-Time Mining: Turning Geo-Data into Mining Intelligence

CIM Conference, 09.05.2018

Jörg Benndorf (University of Mining and Technology Freiberg, D) and David Buttgereit (XGraphic, D)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989
Structure

- Introduction / Motivation
- Real-Time Mining Project Overview
- Specific Developments in WPs
 - Material Characterization
 - Model Updating
 - Visualization
- Summary & Outlook
Mining a geologically complex orebody

- Highly complex geology
- Critical accessment
- Geological uncertainty

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989
Mining a geologically complex orebody

Input

- Critical assessment
- Highly complex geology
- Geological uncertainty

Output

- Strict customer specifications
- Continuous, reliable feed
- Good quality product

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989
Mining a geologically complex orebody

Complex Mineral Extraction Process

Input

• Critical assessment
• Highly complex geology
 ➔ Geological uncertainty

Output

• Strict customer specifications
• Continuous, reliable feed
• Good quality product
Requirements for a resource-effective extraction

Ore body with high variability and uncertainty

Variability of grades

Homogeneous product

Effective Grade Control

Taking into account geological structure and customers requirements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989
Availability of online data:

- Material Characteristics (grade, texture, petro-physical properties)
- Machine Performance (Actual cutting energy, break down behavior)
- Online positioning and material tracking (GPS, UPS)
Usage of online data to improve GC process

Recovery can be significantly increased by changing mineral resource/reserve management from a ‘batch-type’ to a near-continuous model-based controlled activity utilizing online data.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
XGraphic – Company Profile

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989
Research focus in the RTM approach

Non-destructive methods for material characterization

Live updating of resource/grade control models

Big Data Management and Visualization

Real-Time decision support in operations management

Decision support in:
- Block classification
- Block delineation
- Short-term schedule and blending
- Logistics and stockpile management

Sensor Image

Classification

Block grade and mineral content

3.7% Cu
4.7% Zn

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
Process and information flow in an underground mining cycle

Step 1: Blast hole drilling

Drill Hole

Classification
Scheduling

Grade Control
Block Model

Dispatching
Logistics

Control
decision
points

Sensors for material characterization
Sensors for machine performance
Sensors for geo-referencing (positioning and material tracking)
Process and information flow in an underground mining cycle

Step 2: Ore Handling

Drill Hole
Core Sample
Ore zone
Muck-pile
LHD
Ore-pass
Ore Transfer
BIN
Crusher
Step 2: Ore Handling Control decision points
Selective Loading Scheduling
Sensors for material characterization
Sensors for machine performance
Sensors for geo-referencing (positioning and material tracking)

Step 1: Ore Handling

Control decision points
Selective Loading Scheduling
Sensors for material characterization
Sensors for machine performance
Sensors for geo-referencing (positioning and material tracking)

Dispatching
BIN A B C
Crusher

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989
Options for sensor deployment in a mining cycle

<table>
<thead>
<tr>
<th>Cycle position</th>
<th>Sensor location</th>
<th>Sensor Type</th>
<th>Information</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre extraction</td>
<td>MWD (Monitoring while drilling blast holes)</td>
<td>Machine performance</td>
<td>hardness, grindability</td>
<td>3D point data</td>
</tr>
<tr>
<td></td>
<td>Down-hole logs</td>
<td>Material properties</td>
<td>Textures, mineralogy, geochemistry</td>
<td>3D point data</td>
</tr>
<tr>
<td></td>
<td>Chip- and Channel Sampling</td>
<td>Material properties</td>
<td>typically geochemistry</td>
<td>3D point data</td>
</tr>
<tr>
<td></td>
<td>Production face</td>
<td>Material properties</td>
<td>property maps</td>
<td>Images or 3D geometries</td>
</tr>
<tr>
<td>During extraction</td>
<td>Rock cutting</td>
<td>Machine performance</td>
<td>Specific energy usage, hardness</td>
<td>3D point data</td>
</tr>
<tr>
<td></td>
<td>Supply chain</td>
<td>Material tracking</td>
<td>material flow</td>
<td>3D point data</td>
</tr>
<tr>
<td>Post extraction</td>
<td>Pre crusher</td>
<td>Material properties</td>
<td>size distribution, textures, mineralogy, geochemistry</td>
<td>time series</td>
</tr>
<tr>
<td></td>
<td>Post crusher</td>
<td>Material properties</td>
<td>size distribution, textures, mineralogy, geochemistry</td>
<td>time series</td>
</tr>
</tbody>
</table>
Developments in sensors for material characterization

- Imaging techniques will be deployed to define target domains for point analysis.

Mine face (static)
- Imaging
 - Optical
 - Thermal
 - Hyperspectral

Drill core (Static)
- Imager
- LIBS

Muckpile (Static)
- Imager
- XRF
- (LIBS)

Dynamic
- Conveyor belt
- LHD
- Imager
- XRF
- LIBS is excluded

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989.
Developments in data assimilation for model updating

True but unknown deposit

Sensor Measurements

Production Monitoring

Closing the Feed – Back - Loop

Exploration Data Set

Sampling

Difference

Sequential Updating

Model Based Prediction

Decisions e.g. Mine Planning

Estimated Deposit Model + Uncertainty

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989
Developments in data integration and visualization

- Mine layout with operating points
- 3D visualization of the geological surfaces
- 3D visualisation of the grade-control model
- 2D View of the schematic process flow
- Machine and equipment positions
- Sensor measurements
- Long term planning
- Short term planning
- Optimizer scenario comparison
- Editor for optimization parameter
- Face view screen

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989
Public demonstration: “Reiche Zeche” Research Mine Freiberg, Germany RTM-Conference
Summary: Moving towards a closed loop of resource management

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
Outlook: VR/AR @ XGraphic

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989
Thank you and „Glückauf“

www.realtime-mining.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641989