REAL-TIME MINING: SENSOR BASED CONTINUOUS PROCESS CONTROL AND OPTIMIZATION IN MINERAL RESOURCE EXTRACTION

AACHEN INTERNATIONAL MINING SYMPOSIA (AIMS 2016)
MINING IN EUROPE
18TH MAY 2016

MWN BUXTON, J BENNDORF, D BUTTGEREIT & A MATTHÄUS
ON BEHALF OF THE REAL-TIME MINING CONSORTIUM

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
EU FUNDED H 2020 PROJECT: PARTNERS

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
BACKGROUND: THE POTENTIAL

Potential of critical raw materials in Europe classified by deposit sizes (PROMINE)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
BACKGROUND: BARRIERS TO REALISING THE POTENTIAL

The main barriers to overcome for the successful economic exploitation:

- **effective grade control**, which will maximize resource potential along the whole value chain

- **minimization of handling zero-value material** introduced by dilution, thus reducing unnecessary expenditure of energy and financial resources and

- **management and control of the geological uncertainty** due to limited information available.
Main Source of Risk: Geological Uncertainty

Limited Information 1:10,000,000

Complex Geology

Tight product specifications
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
NEW INFORMATION POTENTIAL

Increasing Availability of Sensor Based Online Data:
• Material characterization (geo-chemical, textural and physical properties)
• Equipment performance, upstream and downstream (e.g. efficiency, down-time)
• Equipment location (e.g. GPS, UPS)
THE REAL-TIME MINING APPROACH (H2020 PROJECT)

Discontinuous and Intermittent Process Monitoring and Decision Making

INNOVATION

Near-Continuous Process Control and Optimization

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
Overall objective: Develop an innovative technical solution for resource-efficient and optimal high precision/selective mining in geologically complex settings using online data.

Hypothesis: recovery can be significantly increased by changing mineral resource management from a ‘batch-type’ to a near-continuous model-based controlled activity

EU Approval: Project Started: April 2015 Completion: March 2019
REAL-TIME MINING: THE BUILDING BLOCKS

BB 1: Sustainability and Industrial Viability Indicators
Evaluation towards resource efficiency and environmental impact
Economic measures accounting for sustainability and industrial viability

Mining Machine

- **BB 2: Underground Positioning**
 - Positioning and inertial navigation
 - Infrastructure

- **BB 3: Sensors for Material Characterization**
 - Sensors - combinations
 - Link to ore properties (geochem, texture, mineralogical physical)
 - Representative sampling strategies

- **BB 4: Sensors for Machine Performance**
 - Machine performance measures such as cutting energy and link to material properties

Exploration and Mine Planning

- **BB 5: Data Integration, Management and Visualisation**

- **BB 6: Sequential Resource Model Update – Real Time**
 - Real-Time updating integration of exploration data and sensor information (material + machine performance sensors)

- **BB 7: Integrated Long- and Short-Term Optimization**
 - Rapid optimization of short-term sequencing and production control
 - Integrated optimization of short- and long-term planning

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
EXTRACTION METHODS: RTM CYCLIC EXTRACTION

Step 2: Ore Handling

Drill Hole

Core Sample

Ore zone

Selective Loading Scheduling

Ore-pass

Muck-pile

LHD

Ore Transfer

BIN

Crusher

Control decision points

Sensors for material characterization

Sensors for machine performance

Sensors for geo-referencing (positioning and material tracking)

Selective Loading Scheduling

Dispatching

BIN A B C

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
REAL-TIME MINING: REAL-TIME DATA

Location

Material Characterisation

(Lead: RWTH Aachen)

(Lead: TU Delft)

Machinery

(Lead: Sonic SampDrill)
TEST CASE 1

“Reiche Zeche” Research Mine
Freiberg, Germany

Source: Description „Test Site Mine „Reiche Zeche‘, Freiberg, Saxony, Germany“ provided by TU Bergakademie Freiberg

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641989
TEST CASE 2

“Neves Corvo” Copper Mine
Portugal (Massive sulphide ore and associated stockwork zone)

Source: lundin mining
THREE TAKEAWAYS

1. Real-Time Mining is an exciting European Union funded H2020 project and integrates multiple disciplines.

2. Making best use of online production information can lead to a shift in paradigm from a batch-type to a continuous process monitoring and control and can create significant value.

3. Real-Time Mining will demonstrate this hypothesis in full industrial scale case studies (TRL 7).
Thank you for your attention and Glückauf

www.realtime-mining.eu